Skip to main content
Managed Kubernetes node configurations

Managed Kubernetes node configurations

Three types of configurations are available for nodes on the cloud server:

You can compare the available configurations in the table Comparison of node configurations on a cloud server.

If the available configurations do not suit you, for example, you need more vCPU or RAM, file a ticket — we'll pick configurations with a different number of resources.

Custom configurations

In custom node configurations, you can specify the required number of resources. The limits depend on the pool you can see them in the table Comparison of node configurations on a cloud server.

As a boot disk for node you can select local disk or one of the four network disk types.

Fixed configurations with GPU

You can select a fixed configuration with dedicated GPUs and a specified resource ratio. For detailed specifications of the GPUs, refer to the instruction manual Create a Managed Kubernetes cluster with GPUs.

The configurations correspond to GPU Line cloud servers.

You can select one of four disks as a boot disk for node network disk types.

Comparison of node configurations on a cloud server

If the default Managed Kubernetes configurations are not suitable, you can use the fixed cloud server configurations.

Arbitrary configurations
(except for ru-3, ru-9,
ru-7, ru-8)
Custom configurations
(ru-3, ru-9,
ru-7, ru-8)
Fixed configurations with GPU
Number of vCPUs1-81-324-48

1-8 GPU
RAM1-64 GB*4-256GB*24-700 GB
Local disk size20-512 GB**20 GB — 1.2 TB**
Network disk size20-512 GB20 GB — 1.2 TB30-512 GB

*If the configuration has more than 8 vCPUs, you can select RAM with a ratio of at least 1:2. For example, if you select 10 vCPUs, the RAM must be at least 20 GB.

**If there are more than 8 vCPUs in the configuration, you can select a local disk size with a ratio of at least 1:32. For example, for 10 vCPUs, the disk size is at least 320 GB.

You can view the availability of configurations in the availability matrix Managed Kubernetes and GPU for Cloud Servers and Managed Kubernetes.